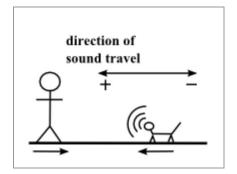
The Doppler Effect (SwiftStudy Printable)


Key Formula

$$f_o = f_s \left(\frac{v - v_o}{v - v_s} \right)$$

f_o	observed frequency	Hz
f_s	frequency of source	Hz
\overline{v}	speed of sound	m/s
$\overline{v_o}$	velocity of observer	m/s
$\overline{v_s}$	velocity of source	m/s

Tips to Remember

In this formula, the key to success is following the sign conventions. The direction **that the sound travels** is always the positive direction; set the other velocities accordingly. For example, consider a problem in which a person and a barking dog run toward each other as shown at the right. The sound travels to the left, so everything moving left must have positive velocity, and vice versa. Therefore v is positive (as always); v_o is negative since the human obersever is moving right, and v_s is positive because the dog (the sound source) is running left.

It's always a good idea to make sure your answers make sense. Remember that when the source and observer are getting closer together, you expect the frequency to increase, i.e., $f_o > f_s$. Conversely, when the source recedes from the observer, expect a decreasing frequency, or $f_o < f_s$.